On convergence of spectral expansions of Dirac operators with regular boundary conditions
نویسندگان
چکیده
Spectral problem for the Dirac operator with regular but not strongly boundary conditions and complex-valued potential summable over a finite interval is considered. The purpose of this paper to find under which root function system forms usual Riesz basis rather than parentheses.
منابع مشابه
The spectral properties of differential operators with matrix coefficients on elliptic systems with boundary conditions
Let $$(Lv)(t)=sum^{n} _{i,j=1} (-1)^{j} d_{j} left( s^{2alpha}(t) b_{ij}(t) mu(t) d_{i}v(t)right),$$ be a non-selfadjoint differential operator on the Hilbert space $L_{2}(Omega)$ with Dirichlet-type boundary conditions. In continuing of papers [10-12], let the conditions made on the operator $ L$ be sufficiently more general than [11] and [12] as defined in Section $1$. In this paper, we estim...
متن کاملSpectral Boundary Conditions for Generalizations of Laplace and Dirac Operators
Spectral boundary conditions for Laplace-type operators on a compact manifold X with boundary are partly Dirichlet, partly (oblique) Neumann conditions, where the partitioning is provided by a pseudodifferential projection; they have an interest in string and brane theory. Relying on pseudodifferential methods, we give sufficient conditions for the existence of the associated resolvent and heat...
متن کاملSpectral theory of boundary value problems for Dirac type operators
The purpose of this note is to describe a unified approach to the fundamental results in the spectral theory of boundary value problems, restricted to the case of Dirac type operators. Even though many facts are known and well presented in the literature (cf. the monograph of BoossWojciechowski [7]), we simplify and extend or sharpen most results by using systematically the simple structure whi...
متن کاملInverse Problem for Interior Spectral Data of the Dirac Operator with Discontinuous Conditions
In this paper, we study the inverse problem for Dirac differential operators with discontinuity conditions in a compact interval. It is shown that the potential functions can be uniquely determined by the value of the potential on some interval and parts of two sets of eigenvalues. Also, it is shown that the potential function can be uniquely determined by a part of a set of values of eigenfun...
متن کاملSpectral Problems for Impulsive Dirac Operators with Spectral Parameters Entering via Polynomials in the Boundary and Discontinuity Conditions
In this work, an eigenvalue problem for Dirac operators with discontinuities is investigated in the case when an eigenparameter appears not only in the differential equation but also in the boundary and jump conditions, polynomially. Mathematics Subject Classification: 34A55, 34B24, 34L05
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematische Nachrichten
سال: 2022
ISSN: ['1522-2616', '0025-584X']
DOI: https://doi.org/10.1002/mana.201900454